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Context: Issues

Solar receiverThémis, Targasonne

• Only one side of the solar receiver is heated

• Implies high temperature gradient
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Context: Issues

Flows in the receiver

• The flows in the new generation solar receivers are turbulent and anisothermal

• Thermal exchanges at the boundary define the energy efficiency

Scientific bottleneck

• Understand the coupling between velocity and temperature in highly anisothermal

flows
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Context: Simulations

DNS

T-LES

• Modeling of strongly anisothermal

turbulence using Thermal Large Eddy

Simulation (T-LES)

• T-LES only simulates the large scales,

and models the small scales
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Context: Simulations

Hot wall heat flux
• Development of deconvolution
techniques to accurately
reconstruct fields

⇒ Estimation of RMS

temperature for performance

of T-LES models against

DNS

⇒ Estimation of RMS heat flux

for estimation of

thermomechanical

constraints
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Context: Study case

Anisothermal bi-periodic plane channel

T1 = 2T0

T0 = 293K

• Hot wall: concentrated sunlight, cold wall: insulated

• Fluid: air

• Regular mesh in the x and z directions

• Hyperbolic tangent mesh in the direction normal to the walls y

• Half height of the channel h = 15mm 7/31
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Principles of machine learning

General principles

• Training algorithms to recognize patterns in data and make predictions or decisions

based on that data.

• Takes the form of a non-linear optimization problem over labeled data (i.e. for each

input, there’s an expected output)

• Stacking layers with non linearities in between them

• Many applications: Image generation, fraud detection, text translation, artistic tools,

etc... .
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Convolutional neural network

Convolutional Neural Networks (CNNs)

• Type of architecture with a learnable (optimizable) convolutional kernel

• Kernel can be any dimention, we can learn

Convolutional neural network layer

Input image

Convolutional kernel

Output image
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Reconstruction of DNS fields from LES fields

Super-resolution
• The LES filter is unknown

• Learning of an inversion operator for filtering on the

temperature field:

TDNS ≈ G−1 ∗ TLES

• The neural network learns the correction on the LES field

Tpred = TLES + fCNN(TLES) ≈ TDNS
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Reconstruction of DNS fields from LES fields

Proposed architecture in Lapeyre et al. [2019]
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Reconstruction of DNS fields from LES fields

Data acquisition step through an image
DNS fine

Coarsening

DNS coarse

Filtering

LES coarse

• Anisothermal DNS, mean friction Reynolds number Reτ = 180, and Prandtl

Pr = 0.76 after statistical convergence

• 17 DNS snapshots spaced by ∆+
t = 7.76× 10−3

• Interpolate from a fine mesh of (384, 384, 266) points to (48, 48, 52) points

• Filter using a weighted top-hat filter

• Filtered DNS snapshots then serve us as input to our network. 14/31



Reconstruction of DNS fields from LES fields

Benchmark

• We compare the performance of our motel to an already existing method developped

by Van Cittert The inverse of a convolution filter G assumed invertible, writes

G−1 = (I − (I − G ))−1, (1)

= lim
p→∞

p∑
i=0

(I − G )i . (2)

We take a p = 6 approximation to this converging Neumann series (Stolz and

Adams [1999] recommend p = 5).
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Reconstruction of DNS fields from LES fields

Data management

Original 90° rotation x axis flip

• 17 snapshots are split into 13 for training, 4 for validation and 1 for test

• We learn over patches, and increase procedurally the sampling space

• At each fixed height, with patches of size 16, we have the following number of

examples
nx
16

× nz
16

× flipx × flipz × rotationxz × ntrain = 936

per fixed height
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Reconstruction of DNS fields from LES fields

An illustration of the learning procedure

LES

Crop

LES crop

Reconstruction

fCNN

DNS

Crop

Optimisation of CNN

DNS crop

16

16
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Reconstruction of DNS fields from LES fields

10% increase 10% increase 10% increase

· · ·
y

full domain

• Previous technique domain increase procedure

• Enables learning harder distributions of flow

• Reτ hot = 105,Reτ cold = 260
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Reconstruction of DNS fields from LES fields

Results: Train loss

0 1000
Epochs

10−7

10−6

Lo
ss

training
validation

• Neural network manages to quickly

learn and generalize

• Jumps are due to increase of the

learning domain
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Reconstruction of DNS fields from LES fields

Results: Validation slices, Tvalid0

Spacial gradients in our method are slightly high
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Reconstruction of DNS fields from LES fields

Results: Validation slices, Tvalid1
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Reconstruction of DNS fields from LES fields

Results: Validation slices, Tvalid2
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Reconstruction of DNS fields from LES fields

Results: Validation slices, Tvalid3
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Reconstruction of DNS fields from LES fields

Results: Validation RMS:
√
⟨T ′2⟩ = ⟨T 2⟩ − ⟨T ⟩2

• Slight overshoot of the RMS on the hot side
24/31



Reconstruction of DNS fields from LES fields

Results: Test slices, Ttest

25/31



Reconstruction of DNS fields from LES fields

Results: Test RMS
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Reconstruction of DNS fields from LES fields

Results: PDF(T) for the 3 above cuts

• Good prediction of the temperature probability distribution 27/31



Outline

1. Solar context

Solar powerplants

Flow and modelling

2. Machine Learning: Principles

General principles

3. Super-resolution

Training process

Results and analysis

4. Conclusion and future work



Reconstruction of DNS fields from LES fields

In conclusion

• Our method learns and generalizes the small scales reconstruction even for

snapshots taken farther in time for RMS, densities and slices

• Overshot spacial gradients can be mitigated through an additional filtering layer

• Good tool for the study of flows inside high temperature solar receivers

Future work

• Learning over different meshes

• Learning over distribution of data

• Generalizing over different Reynolds number flows
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